Printed	Pages	_	4

Roll No.:....

322352(28)

B. E. (Third Semester) Examination, April-May 2021

(New Scheme)

(CSE Branch)

BASIC ELECTRONICS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Solve any two parts from (b), (c) and (d) of each questions.

Unit-I

1. (a) What is an ideal diode?

2

(b) Draw and explain V-I characteristics of normal and ideal p-n junction diode.

7

(c) The current flowing in a certain PN junction diode at room temperature is 2×10^{-7} A. When the large

		reverse voltage is applied. Calculate the current	
		flowing when 0.1 V forward bias is applied at room	
		temperature.	7
	(d)	Assuming standard value for silicon, find the resistivity	
		if a donar type impurity in added to the extent of 1	
		in 10 ⁸ atoms.	7
		Unit-II	
2	(0)	How the full years neetifier is supplied to helf-years	
2.	(a)	How the full wave rectifier is superior to half wave rectifier?	2
		rectiler?	4
	(b)	With a neat circult diagram, explain the operation of	
		a bridge rectifier.	7
	(c)	Explain zener diode breakdown mechanism.	7
	(d)	A 4.7 V zener has a resistance of 15 Ω , what is the	
		terminal voltage when the current is 20 mA?	7
		Unit-III	
3.	(a)	Write the different types of transistor configuration.	2
	(b)	Explain why collector region is larger than that of	
		the emitter and base	7

[3]

(c) Draw Eber's Moll model of a transistor and hence	
explain transistor action.	7
(d) A certain transistor has $\alpha = 0.98$, $I_{co} = 5 \mu$ A,	
$I_{B} = 100 \mu$. find the values of collector current and	
amitter current.	7

Unit-IV

4. (a) What do you mean by biasing?

(b) Define stability factor w.r.t. transisto	or biasing. State	
the factors affecting the stability.		7
(c) Why is biasing needed for a transit	stor to work as	
an amplifier? Explain with the help of	of neat diagram.	7
(d) Draw a self bias circuit. Expalin wh	ny such a circuit	
is an improvement on the fixed bias	circuit as for as	
stability is concerned.		7

Unit-V

9.	(a)	Diaw	Symbol	101 11	-Citailit	or allu	F-Chainle	JEE1.	4
	(b)	Distin	guish be	etweer	JFET	and N	OSFET.		-

2

(c) Explain the difference between the enhancement mode and deplection mode MOSFETs.
(d) Sketch and explain the basic structure of an N-channel junction field effect transistor.